よくある方程式 - 質問解決D.B.(データベース)

よくある方程式

問題文全文(内容文):
$x^2+x+1=0$のとき$x^5+x^4+1=$?
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+x+1=0$のとき$x^5+x^4+1=$?
投稿日:2024.09.11

<関連動画>

関西大 フェルマーの小定理の証明

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,m,kを自然数とする.
(1)${}_m \mathrm{ C }_0+{}_m \mathrm{ C }_1+{}_m \mathrm{ C }_2+・・・{}_m \mathrm{ C }_m-1+{}_m \mathrm{ C }_m$の値を求めよ.
(2)$1\leqq k\leqq P-1$のとき${}_P \mathrm{ C }_k$はPの倍数である.
(3)$2^P-2$はPの倍数である.

関西大過去問
この動画を見る 

福田の数学〜京都大学2022年理系第4問〜四面体に関する証明と線分の長さの最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCが
$OA=4, OB=AB=BC=3, OC=AC=2\sqrt3$
を満たしているとする。Pを辺BC上の点とし、$\triangle OAP$の重心をGとする。
このとき、次の各問いに答えよ。
(1)$\overrightarrow{ PG } ∟ \overrightarrow{ OA }$を示せ。
(2)Pが辺BC上を動くとき、PGの最小値を求めよ。

2022京都大学理系過去問
この動画を見る 

いつも質問されるので。。。分数式の計算 駒沢大学 数II

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^2+8x+7}{x^2 -7x+10} \div \frac{x^2-2x-3}{x^2 -5x+6}$

駒澤大学
この動画を見る 

分数式の計算 千葉工業大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2}{x} + \frac{x-2}{x^2+x}$を簡単にせよ

千葉工業大学
この動画を見る 

整式の剰余 すっきり解こう

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2021}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る 
PAGE TOP