問題文全文(内容文):
$x$についての関数$f(x), g(x), h(x)$を$f(x) = 4x^4, g(x) = 12x + 8, h(x) = 4x^2+1$により定める。座標平面上で曲線 $y = f(x)$と直線$y=g(x)$は、異なる2点で交わる。それら交点の$x$座標を$a, b$ ($a \lt b$)とする。
(1) $f(x)+h(x) = (\fbox{ ア }x^2+\fbox{ イ })^2, g(x)+h(x) = (\fbox{ ウ }x+\fbox{ エ })^2$である。
(2) $a+b=\fbox{ オ }, b-a=\sqrt{ \fbox{ カ } }$である。
$x$についての関数$f(x), g(x), h(x)$を$f(x) = 4x^4, g(x) = 12x + 8, h(x) = 4x^2+1$により定める。座標平面上で曲線 $y = f(x)$と直線$y=g(x)$は、異なる2点で交わる。それら交点の$x$座標を$a, b$ ($a \lt b$)とする。
(1) $f(x)+h(x) = (\fbox{ ア }x^2+\fbox{ イ })^2, g(x)+h(x) = (\fbox{ ウ }x+\fbox{ エ })^2$である。
(2) $a+b=\fbox{ オ }, b-a=\sqrt{ \fbox{ カ } }$である。
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x$についての関数$f(x), g(x), h(x)$を$f(x) = 4x^4, g(x) = 12x + 8, h(x) = 4x^2+1$により定める。座標平面上で曲線 $y = f(x)$と直線$y=g(x)$は、異なる2点で交わる。それら交点の$x$座標を$a, b$ ($a \lt b$)とする。
(1) $f(x)+h(x) = (\fbox{ ア }x^2+\fbox{ イ })^2, g(x)+h(x) = (\fbox{ ウ }x+\fbox{ エ })^2$である。
(2) $a+b=\fbox{ オ }, b-a=\sqrt{ \fbox{ カ } }$である。
$x$についての関数$f(x), g(x), h(x)$を$f(x) = 4x^4, g(x) = 12x + 8, h(x) = 4x^2+1$により定める。座標平面上で曲線 $y = f(x)$と直線$y=g(x)$は、異なる2点で交わる。それら交点の$x$座標を$a, b$ ($a \lt b$)とする。
(1) $f(x)+h(x) = (\fbox{ ア }x^2+\fbox{ イ })^2, g(x)+h(x) = (\fbox{ ウ }x+\fbox{ エ })^2$である。
(2) $a+b=\fbox{ オ }, b-a=\sqrt{ \fbox{ カ } }$である。
投稿日:2024.08.30





