問題文全文(内容文):
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.24





