福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
投稿日:2025.06.14

<関連動画>

福田のおもしろ数学417〜条件付きの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_n\}$が$a_1=0,a_2=1$

$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$

を満たしている。

$a_n$が

(1)$5$で割り切れる

(2)$15$で割り切れる

となる$n$を求めて下さい。
   
この動画を見る 

島根大 愛知工大 整数・複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#恒等式・等式・不等式の証明#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
a,b,c実数
$a+b+c=3$
$ab+bc+ca \leqq 3$を示せ。

愛知工業大学過去問題
$Z=1-i$
$Z^7+Z^6+Z^5+Z^4+Z^3+Z^2+Z+1$の値
この動画を見る 

🟨にあてはまる数は? 連分数 渋谷教育学園幕張 2022入試問題解説14問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{1+\frac{1}{1+\frac{1}{▢+\frac{1}{▢}}+\frac{1}{▢+\frac{1}{▢}}}}$=$\frac{8}{13}$
▢は同じ数。全て求めよ。

2022渋谷教育学園幕張
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題007〜大阪大学2015年文系数学第1問〜不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#三角関数#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。

2015大阪大学文系過去問
この動画を見る 
PAGE TOP