福田のおもしろ数学538〜数列の一般項を1つの式で表す - 質問解決D.B.(データベース)

福田のおもしろ数学538〜数列の一般項を1つの式で表す

問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
投稿日:2025.06.23

<関連動画>

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
この動画を見る 

芝浦工大 1の(4n+1)乗根

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$z^{4n+1}=1$の解を$1,\alpha,\alpha_2,\alpha_3・・・\alpha_{4n}$とする.

(1)$\alpha_1\alpha_2\alpha_3・・・・・・\alpha_{4n}=\Box$
(2)$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$

2001芝浦工大過去問
この動画を見る 

数列 大阪大

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.

1979大阪大過去問
この動画を見る 

奈良女子大 数列の積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P_n=a_1a_2a_3…a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^\infty a_m$を求めよ

出典:奈良女子大学 過去問
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 
PAGE TOP