問題文全文(内容文):
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
投稿日:2025.07.11




