問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
チャプター:
0:00 オープニング
0:24 問題解説開始
0:52 公倍数を考える
2:50 ポイント
3:27 ベン図
4:45 おまけ
5:34 エンディング
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
投稿日:2023.06.08