福田のおもしろ数学287〜4項からなる数列を求める - 質問解決D.B.(データベース)

福田のおもしろ数学287〜4項からなる数列を求める

問題文全文(内容文):
増加する4つの項からなる正の整数の列がある。最初の3項は等差数列、最後の3項は等比数列をなす。最初の項と最後の項の差は30である。このとき、この4項の総和を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 福田次郎
問題文全文(内容文):
増加する4つの項からなる正の整数の列がある。最初の3項は等差数列、最後の3項は等比数列をなす。最初の項と最後の項の差は30である。このとき、この4項の総和を求めよ。
投稿日:2024.10.15

<関連動画>

【高校数学】 数B-98 数学的帰納法④

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$n\geqq 10$を満たす自然数$n$に対して,
$2^n \gt 10n^2$が成り立つことを数学的帰納法によって証明しよう.
この動画を見る 

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
この動画を見る 

【高校数学】階差数列の問題演習~基礎的な問題~ 3-9.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{eqnarray}
一般項a_nを求めよ
\end{eqnarray}

\begin{eqnarray}
(1)\,\,1,\,7,\,17,\,31,\,71,\,…
\end{eqnarray}
\begin{eqnarray}
(2)\,\,2,\,3,\,5,\,9,\,17,\,…
\end{eqnarray}
この動画を見る 

福田の数学〜北海道大学2025文系第3問〜3項間漸化式と数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

数列$\{a_n\}$を次のように定める。

$a_1=1,a_2=3,$

$(n+1)a_{n+2}-(2n+3)a_{n+1}+(n+2)a_n=0$

$\qquad (n=1,2,3,・・・・・・)$

(1)$b_n=a_{n-1}-a_n$とおくと、

$b_{n+1}=\dfrac{n+2}{n+1}b_n \quad (n=1,2,3,・・・・・・)$

が成り立つことを示せ。

(2)数列$\{a_n\}$の一般項を求めよ。

(3)$\displaystyle \sum_{n=1}^{225}\dfrac{1}{a_n}$の値を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
この動画を見る 
PAGE TOP