どっちがでかい? - 質問解決D.B.(データベース)

どっちがでかい?

問題文全文(内容文):
どちらが大きいか?

$\dfrac{10^{2019}+1}{10^{2020}+1}$ VS $\dfrac{10^{2020}+1}{10^{2021}+1}$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$\dfrac{10^{2019}+1}{10^{2020}+1}$ VS $\dfrac{10^{2020}+1}{10^{2021}+1}$
投稿日:2021.05.07

<関連動画>

共通テスト追試ムズイぞ整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
共通テスト追試の整数問題を解説していきます.
この動画を見る 

京都大 整数問題 超基本 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'01京都大学過去問題
n整数
$n^9-n^3$が9の倍数であることを示せ
この動画を見る 

【高校数学】素数と素因数分解~素数の基礎と無限にある証明~ 5-2【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 540n }$が自然数になるような最小の自然数$n$を求めよ。
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 

電卓アプリで遊んでみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
この動画を見る 
PAGE TOP