どっちがでかい? - 質問解決D.B.(データベース)

どっちがでかい?

問題文全文(内容文):
どちらが大きいか?

$\dfrac{10^{2019}+1}{10^{2020}+1}$ VS $\dfrac{10^{2020}+1}{10^{2021}+1}$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$\dfrac{10^{2019}+1}{10^{2020}+1}$ VS $\dfrac{10^{2020}+1}{10^{2021}+1}$
投稿日:2021.05.07

<関連動画>

福田のおもしろ数学155〜6の倍数である証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
この動画を見る 

数学「大学入試良問集」【3−3 整数 余りによる分類②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
$p,2p+1,4p+1$がいずれも素数であるような$p$をすべて求めよ。

(2)
$q,2q+1,4q-1,6q-1,8q+1$がいずれも素数であるような$q$をすべて求めよ。
この動画を見る 

広島大 約数の総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は0以上の整数である.
$3^{2m+1}・7^{2n+1}$の正の約数のうち,4で割って1余るものの総和を求めよ.

広島大過去問
この動画を見る 

東大 2015 独自解法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ {}_{2015}\mathrm{C}_{m}$が偶数となる最小の$m$を求めよ.
$1\leqq m\leqq 2015$であり,$m$は自然数とする.

2015東大過去問
この動画を見る 
PAGE TOP