大学入試問題#267 奈良県立医科大学 改 (2011) #不定積分 【難】 - 質問解決D.B.(データベース)

大学入試問題#267 奈良県立医科大学 改 (2011) #不定積分 【難】

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x\ log\ x}{(1+x)^3}dx$を計算せよ

出典:2011年奈良県立医科大学 入試問題
チャプター:

00:00 問題掲示
00:15 本編スタート
08:48 作成した解答①
09:01 作成した解答②
09:13 エンディング(楽曲提供:兄いえてぃ様)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x\ log\ x}{(1+x)^3}dx$を計算せよ

出典:2011年奈良県立医科大学 入試問題
投稿日:2022.07.31

<関連動画>

#藤田保健衛生大学2012 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$a \gt 0,b \gt 0$
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{\{ax+b(1-x\}^2)} dx$

出典:2010年藤田保健衛生大学
この動画を見る 

大学入試問題#726「一橋レベルでこれは落とせん」 一橋大学(2021)積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)$は微分可能かつ導関数が連続な関数とする。
$f(0)=0$であるとき、
$\displaystyle \frac{d}{dx}(\displaystyle \int_{0}^{x} e^{-t}f(x-t)dt)=\displaystyle \int_{0}^{x} e^{-t}f'(x-t)dt$ を示せ

出典:2021年一橋大学後期 入試問題
この動画を見る 

大学入試問題#799「もう詰んでます!」 #大阪公立大学(2024) #定積分 #King_property

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪公立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{\sqrt{ 3 }} \displaystyle \frac{log(1+x^2)}{1+e^x} dx$

出典:2024年大阪公立大学
この動画を見る 

三次関数の基本性質 変曲点について点対称 畳8畳

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題099〜早稲田大学2020年度社会科学部第3問〜複数の円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。

2020早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP