大学入試問題#563「一度は解きたい問題」 東京帝国大学(1934) 曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#563「一度は解きたい問題」 東京帝国大学(1934) 曲線の長さ

問題文全文(内容文):
曲線$y=\displaystyle \frac{e^x+e^{-x}}{2}$の$x=0$から$x=a$までの長さを求めよ。

出典:1934年東京帝国大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:22 本編スタート
05:04 作成した解答①
05:16 作成した解答②

単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
曲線$y=\displaystyle \frac{e^x+e^{-x}}{2}$の$x=0$から$x=a$までの長さを求めよ。

出典:1934年東京帝国大学 入試問題
投稿日:2023.06.12

<関連動画>

#青山学院大学2023#定積分_26#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \tan^2x dx$

出典:2023年青山学院大学
この動画を見る 

#宮崎大学2024#定積分_17#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$

出典:2024年宮崎大学
この動画を見る 

#電気通信大学2015#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2015年電気通信大学
この動画を見る 

大学入試問題#392「よく見る積分!!!」 #東京理科大学2011 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ t \to \infty } \displaystyle \int_{0}^{t} x\ 2^{-x^2} dx$

出典:2011年東京理科大学 入試問題
この動画を見る 

福田の数学〜北里大学2024医学部第2問〜関数と不等式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)関数$y=\frac{1}{x}$の定積分を用いて、$n\geqq 2$を満たすすべての$n$に対して$f(x)\gt 0$が成り立つことを示せ。
(2)$f(x)=x+\frac{x}{1+x}-2\log (1+x)$とおく。すべての正の実数$x$に対して、$f(x)\gt 0$が成り立つことを証明せよ。さらに、すべての正の整数$n$に対して$\frac{1}{n}+\frac{1}{n+1}\gt 2\log (1+\frac{1}{n})$を示せ。
(3)$n\geqq 2$を満たすすべての整数$n$に対して$\displaystyle \sum_{k=1}^n \frac{1}{k}-\frac{1}{2}(1+\frac{1}{n})\gt \log n$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP