#59数検1級1次「国立大の入試問題の代表的な題材」 - 質問解決D.B.(データベース)

#59数検1級1次「国立大の入試問題の代表的な題材」

問題文全文(内容文):
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。

出典:数検1級1次
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。

出典:数検1級1次
投稿日:2024.04.04

<関連動画>

埼玉大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-9x^2$
$f(x)$の接線で$(3,0)$を通り、接点の$x$座標が負のものを$y=ax+b$
接点の$x$座標を$p$とする。
$\displaystyle \int_{p}^{ 3 }|f(x)-(ax+b)|dx$の値

出典:2008年埼玉大学 過去問
この動画を見る 

大学入試問題#536「計算力大事」 福島県立医科大学(2021) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
すべての実数$x$に対して$f(x)=x+\displaystyle \int_{0}^{1} 2^{2t+x}f(t)\ dt$を満たすとき$f(0)$を求めよ

出典:2021年福島県立医科大学 入試問題
この動画を見る 

#福島大学2024#定積分_4#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$

出典:2024年福島大学
この動画を見る 

九州大 三次関数 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ

出典:2018年九州大学 過去問
この動画を見る 

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
この動画を見る 
PAGE TOP