【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄

問題文全文(内容文):
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
チャプター:

0:00 導入
2:08 (1)解説開始
2:40 グラフの概形
3:26 場合分け①
4:00 場合分け②
4:23 場合分け③
4:52 (2)解説開始

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
投稿日:2024.12.01

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【短時間でマスター!!】正弦定理・余弦定理を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
正弦定理・余弦定理を解説します。
この動画を見る 

【数Ⅰ】【2次関数】関数の場合分け ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1) y=-x+2 (x<2) , y=x-2 (x≧2)
(2) y=1 (x<0) , y=x+1 (x≧0)
(3) y=x² (x<0) , y=x (0≦x<1) , y=-x²+2x (1≦x)
この動画を見る 

【高校数学】  数Ⅰ-70  2次不等式⑨

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎周囲の長さが20cmの長方形の面積を9$cm^2$以上、21$cm^2$以下にするには、短い方の辺の長さをどのような範囲に取ればよいか求めよう。
この動画を見る 

数学「大学入試良問集」【6−3 内接四角形】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四角形$ABCD$が、半径$\displaystyle \frac{65}{8}$の円に内接している。
この四角形の週の長さが$44$で、辺$BC$と辺$CD$の長さがいずれも$13$であるとき、残りの2辺$AB$と$DA$の長さを求めよ。
この動画を見る 
PAGE TOP