問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)整式x^5+x^4+x^3+x^2+x+1は、整数を係数とし、次数が1以上で、\\
かつ最高次の項の係数が1であるような3つの整式\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }の積に\\
因数分解せよ。
\end{eqnarray}
2022慶應義塾大学医学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (2)整式x^5+x^4+x^3+x^2+x+1は、整数を係数とし、次数が1以上で、\\
かつ最高次の項の係数が1であるような3つの整式\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }の積に\\
因数分解せよ。
\end{eqnarray}
2022慶應義塾大学医学部過去問
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)整式x^5+x^4+x^3+x^2+x+1は、整数を係数とし、次数が1以上で、\\
かつ最高次の項の係数が1であるような3つの整式\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }の積に\\
因数分解せよ。
\end{eqnarray}
2022慶應義塾大学医学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (2)整式x^5+x^4+x^3+x^2+x+1は、整数を係数とし、次数が1以上で、\\
かつ最高次の項の係数が1であるような3つの整式\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }の積に\\
因数分解せよ。
\end{eqnarray}
2022慶應義塾大学医学部過去問
投稿日:2022.06.14