福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
投稿日:2018.05.28

<関連動画>

【数C】【複素数平面】複素数の大きさ・対称式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\alpha,\beta$は複素数とする。$|\alpha|=|\beta|=1,\alpha+\beta+1=0$のとき、$\alpha^2+\beta^2$の値を求めよ。
この動画を見る 

福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。

2021立教大学理工学部過去問
この動画を見る 

名古屋大学 z^6=64 の6つの解を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'05名古屋大学過去問題
$Z^6 = 64$
この動画を見る 

18愛知県教員採用試験(数学:10番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $w=\frac{z-2i}{z+i},|z|=2$
(1)wはどのような図形か
(2)|w-i|の最大値
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る 
PAGE TOP