福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
投稿日:2022.06.16

<関連動画>

高知大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$

$a_n$を求めよ

出典:1995年高知大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)3進法で表された3n桁の整数                   \\
\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }              \\
がある(ただし、nは自然数とする)。この数は、1 \leqq k \leqq nを満たす全て\\
の自然数kに対して、最小の位から数えて3k番目の位の数が2、3k-1番目の位\\
の数が1、3k-2番目の位の数が0である。この数を10進法で表した数をa_n\\
とおく。\\
(\textrm{i})a_2=\boxed{\ \ ク\ \ }\ である。\\

2021慶應義塾大学薬学部過去問
(\textrm{ii})a_nをnの式で表すと、\boxed{\ \ ケ\ \ }\ である。
\end{eqnarray}
この動画を見る 

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9  \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 

【数学B/テスト対策】等比数列の一般項と和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等比数列$-2,6,-18,54,…$について、次の問いに答えよ。
(1)
一般項$a_n$を求めよ。

(2)
初項から第$n$項までの和$S_n$を求めよ。

(3)
初項から第$5$項までの和$S_5$を求めよ。
この動画を見る 
PAGE TOP