問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
投稿日:2022.04.27