数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
投稿日:2021.04.06

<関連動画>

名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!#shorts #高校数学 #名古屋大学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
この動画を見る 

【数A】場合の数:コンビネーションを使った式の証明

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コンビネーションの式の証明です
コンビネーションの使い方は大丈夫??
この動画を見る 

神様の確率OnlineMathContest

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白$999$個赤$1001$個のボールを無作為に1個ずつ取り出し,どちらかの色がすべて取り出されたら終了,白が取り出されて終わる確率を求めよ.
この動画を見る 

福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$4$回続けて投げる

反復試行において、

さいころの出る目を順に$X_1,X_2,X_3,X_4$として、

$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を

以下のように定める。

$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に

ある点を$P_1$とする。

$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に

ある点を$P_2$とする。

$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に

ある点を$P_3$とする。

$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に

ある点を$P_4$とする。

例えば、さいころの出た目が順に$3,2,5,5$ならば

$P_1,P_2,P_3,P_4$の座標はそれぞれ

$(3,0),(3,2),(-2,2),(-2,-3)$となる。

(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は

$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。

ただし、線分は両方の端点を含むものとする。

(3)$P_4$の座標が$(3,3)$である確率は

$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
    
この動画を見る 

福田のわかった数学〜高校1年生067〜場合の数(6)色々な順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(6) 並べ方色々
さいころを4回投げたとき、出た目を順に$a,b,c,d$とする。
次のような目の出方は何通りあるか。
(1)全て異なる目が出る
(2)$a \lt b \lt c \lt d$
(3)$a \leqq b \leqq c \leqq d$
この動画を見る 
PAGE TOP