共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率 - 質問解決D.B.(データベース)

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

問題文全文(内容文):
\begin{eqnarray}
{\large第3問}\\
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ\\
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能\\
性が対価を、条件付き確率を用いて考えよう。\\
\\
(1)当たりくじを引く確率が\frac{1}{2}である箱Aと、当たりくじを引く確率が\frac{1}{3}\\
である箱Bの二つの箱の場合を考える。\\
\\
(\textrm{i})各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき\\
箱Aにおいて、3回中ちょうど1回当たる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \cdots①\\
箱Bにおいて、3回中ちょうど1回当たる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} \cdots②\\
である。\\
\\
(\textrm{ii})まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱\\
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3\\
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが\\
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると\\
P(A \cap W)=\frac{1}{2}×\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}, P(B \cap W)=\frac{1}{2}×\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\\
である。P(W)=P(A \cap W)+P(B \cap W)であるから。3回中ちょうど1\\
回当たった時、選んだ箱がAである条件付き確率P_W(A)は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}と\\
なる。また、条件付き確率はP_W(B)は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}となる。\\
(2)(1)のP_W(A)とP_W(B)について、次の事実(*)が成り立つ。\\
\\
事実(*)\\
P_W(A)とP_W(B)の\boxed{\boxed{\ \ ス\ \ }}は、①の確率と②の確率の\boxed{\boxed{\ \ ス\ \ }}\\
に等しい。\\
\\
\boxed{\boxed{\ \ ス\ \ }}の解答群\\
⓪和 ①2乗の和 ②3乗の和 ③比 ④積 \\
\\
(3)花子さんと太郎さんは事実(*)について話している。\\
花子:事実(*)はなぜ成り立つのかな?\\
太郎:P_W(A)とP_W(B)を求めるのに必要なP(A \cap W)とP(B \cap W)\\
の計算で、①,②の確率に同じ数\frac{1}{2}をかけているからだよ。\\
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数\frac{1}{3}をかける\\
ことになるので、同様のことが成り立ちそうだね。\\
\\
当たりくじを引く確率が、\frac{1}{2}である箱A、\frac{1}{3}である箱B、\frac{1}{4}である箱\\
Cの三つの箱の場合を考える。まず、A,B,Cのうちどれか一つの箱\\
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては\\
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。\\
このとき、選んだ箱がAである条件付き確率は\frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}となる。\\
\\
(4)花子:どうやら箱が三つの場合でも、条件付き確率の\boxed{\boxed{\ \ ス\ \ }}は各箱で\\
3回中ちょうど1回当たりくじを引く確率の\boxed{\boxed{\ \ ス\ \ }}になっている\\
みたいだね。\\
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて\\
も、その大きさを比較することができるね。\\
\\
当たりくじを引く確率が、\frac{1}{2}である箱A、\frac{1}{3}である箱B、\frac{1}{4}である箱\\
C、\frac{1}{5}である箱Dの四つの箱の場合を考える。まず、A,B,C,Dのうち\\
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを\\
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど\\
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを\\
引いた可能性が高いかを考える。可能性が高い方から順に並べると\\
\boxed{\boxed{\ \ ト\ \ }}となる。\\
\boxed{\boxed{\ \ ト\ \ }}の解答群\\
⓪A,B,C,D ①A,B,D,C ②A,C,B,D \\
③A,C,D,B ④A,D,B,C ⑤B,A,C,D \\
⑥B,A,D,C ⑦B,C,A,D ⑧B,C,D,A \\
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第3問}\\
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ\\
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能\\
性が対価を、条件付き確率を用いて考えよう。\\
\\
(1)当たりくじを引く確率が\frac{1}{2}である箱Aと、当たりくじを引く確率が\frac{1}{3}\\
である箱Bの二つの箱の場合を考える。\\
\\
(\textrm{i})各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき\\
箱Aにおいて、3回中ちょうど1回当たる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \cdots①\\
箱Bにおいて、3回中ちょうど1回当たる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} \cdots②\\
である。\\
\\
(\textrm{ii})まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱\\
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3\\
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが\\
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると\\
P(A \cap W)=\frac{1}{2}×\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}, P(B \cap W)=\frac{1}{2}×\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\\
である。P(W)=P(A \cap W)+P(B \cap W)であるから。3回中ちょうど1\\
回当たった時、選んだ箱がAである条件付き確率P_W(A)は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}と\\
なる。また、条件付き確率はP_W(B)は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}となる。\\
(2)(1)のP_W(A)とP_W(B)について、次の事実(*)が成り立つ。\\
\\
事実(*)\\
P_W(A)とP_W(B)の\boxed{\boxed{\ \ ス\ \ }}は、①の確率と②の確率の\boxed{\boxed{\ \ ス\ \ }}\\
に等しい。\\
\\
\boxed{\boxed{\ \ ス\ \ }}の解答群\\
⓪和 ①2乗の和 ②3乗の和 ③比 ④積 \\
\\
(3)花子さんと太郎さんは事実(*)について話している。\\
花子:事実(*)はなぜ成り立つのかな?\\
太郎:P_W(A)とP_W(B)を求めるのに必要なP(A \cap W)とP(B \cap W)\\
の計算で、①,②の確率に同じ数\frac{1}{2}をかけているからだよ。\\
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数\frac{1}{3}をかける\\
ことになるので、同様のことが成り立ちそうだね。\\
\\
当たりくじを引く確率が、\frac{1}{2}である箱A、\frac{1}{3}である箱B、\frac{1}{4}である箱\\
Cの三つの箱の場合を考える。まず、A,B,Cのうちどれか一つの箱\\
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては\\
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。\\
このとき、選んだ箱がAである条件付き確率は\frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}となる。\\
\\
(4)花子:どうやら箱が三つの場合でも、条件付き確率の\boxed{\boxed{\ \ ス\ \ }}は各箱で\\
3回中ちょうど1回当たりくじを引く確率の\boxed{\boxed{\ \ ス\ \ }}になっている\\
みたいだね。\\
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて\\
も、その大きさを比較することができるね。\\
\\
当たりくじを引く確率が、\frac{1}{2}である箱A、\frac{1}{3}である箱B、\frac{1}{4}である箱\\
C、\frac{1}{5}である箱Dの四つの箱の場合を考える。まず、A,B,C,Dのうち\\
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを\\
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど\\
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを\\
引いた可能性が高いかを考える。可能性が高い方から順に並べると\\
\boxed{\boxed{\ \ ト\ \ }}となる。\\
\boxed{\boxed{\ \ ト\ \ }}の解答群\\
⓪A,B,C,D ①A,B,D,C ②A,C,B,D \\
③A,C,D,B ④A,D,B,C ⑤B,A,C,D \\
⑥B,A,D,C ⑦B,C,A,D ⑧B,C,D,A \\
\end{eqnarray}
投稿日:2021.01.19

<関連動画>

【高校数学】順列~理解すれば怖くない~ 1-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
順列についての説明動画です
この動画を見る 

場合の数と確率 4S数学問題集数A 110,111,112,113 確率基本④【教えて鈴木先生がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
110 Aの袋には白玉5個、黒玉4個、Bの袋には白玉3個、黒玉5個が入っている。A,Bの袋から1個ずつ玉を取り出すとき、次の確率を求めよ。
(1) Aからは白玉が、Bからは黒玉が出る確率
(2) 2個の玉の色が異なる確率

111 3人が3回じゃんけんをするとき、すべてあいこになる確率を求めよ。

112 A,B,Cの3人がある検定試験に合格する確率がそれぞれ 3\4,1/2,5/8 であるとする。3人のうち、少なくとも1人が合格する確率を求めよ。

113 1個のさいころを4回続けて投げるとき、次の確率を求めよ。
(1) 出る目の最小値が4以上である確率
(2) 出る目の最小値が4である確率
この動画を見る 

福田のわかった数学〜高校1年生076〜場合の数(15)道順(2)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(15) 道順(2)\hspace{100pt}\\
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。\\
(※図は動画参照)
\end{eqnarray}
この動画を見る 

【数A】中高一貫校問題集3(論理・確率編)171:場合の数と確率:反復試行の確率(ひっかけあり!!):先に3勝する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(1)〜4桁の数の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 0,1,2,3,4,5,6から4個の数を選んで4桁の数を作る。\\
最高位の数から順にa_1,a_2,a_3,a_4とする。\\
異なる4個の数を選ぶとき\\
(1)何個の数ができるか。  (2)偶数は何個できるか。\\
(3)5の倍数は何個できるか。(4)3の倍数は何個できるか。\\
(5)6の倍数は何個できるか。(6)a_1 \lt a_2 \lt a_3 \lt a_4となる個数。\\
同じ数を何回用いてもよいとき\\
(7)何個の数ができるか。 (8)偶数は何個できるか。\\
(9)a_1 \leqq a_2 \leqq a_3 \leqq a_4となる個数。
\end{eqnarray}
この動画を見る 
PAGE TOP