【高校数学】 数Ⅱ-5 整式の割り算① - 質問解決D.B.(データベース)

【高校数学】  数Ⅱ-5  整式の割り算①

問題文全文(内容文):
◎次の整式A、Bについて、AをBで割った商と余りを求めよう。

①$A=x^2-5x+6,B=x-1$

②$A=2x^3-3x+1,B=x-2$

③$A=3x^4-5x^2+2,B=x^2-x$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の整式A、Bについて、AをBで割った商と余りを求めよう。

①$A=x^2-5x+6,B=x-1$

②$A=2x^3-3x+1,B=x-2$

③$A=3x^4-5x^2+2,B=x^2-x$
投稿日:2015.04.10

<関連動画>

聖マリアンナ医大 Σ4乗以上の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \sum_{k=1}^{n}k^3=\left[\dfrac{n(n+1)}{2}\right]$を示せ.
②$(k+1)^5-k^5=5k^4+10k^3+10k^2+5k+1$を利用して
 $\displaystyle \sum_{k=1}^{n}k^4$は$n$の5次式で表せることを示せ.
③$\displaystyle \sum_{k=1}^n k^d$は$n$の$(d+1)$次式で表せることを示せ.

2019聖マリアンナ医大過去問
この動画を見る 

100年前の東大入試「1000の10乗根を小数第6位まで求めよ!」物理オリンピック金メダリスト林俊介解説

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[10]{1000}$を二項定理を用いて小数第六位まで求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題044〜北海道大学2017年度理系第1問〜不等式の証明と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
自然数の2乗となる数を平方数という。
(1)自然数a,n,kに対して、
$n(n+1)+a=(n+k)^2$が成り立つとき、
$a \geqq k^2+2k-1$
が成り立つことを示せ。
(2)$n(n+1)+14$が平方数となるような自然数nを全て求めよ。

2017北海道大学理系過去問
この動画を見る 

東京医科大 3乗根の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}$を満たす最小の自然数nを求めよ.

東京医科大過去問
この動画を見る 

大学入試問題#558 東京帝国大学(1933) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ x+1 }+\sqrt{ x-1 }}{\sqrt{ x+1 }-\sqrt{ x-1 }}=\displaystyle \frac{4x-1}{2}$

出典:1933年東京帝国大学 入試問題
この動画を見る 
PAGE TOP