福田の数学〜東京慈恵会医科大学2024医学部第1問〜条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜東京慈恵会医科大学2024医学部第1問〜条件付き確率

問題文全文(内容文):
$\boxed{ 1 }$1から3までの番号をつけた赤玉3個と、1から3までの番号をつけた白玉3個が入った袋から、玉を1個ずつ3回取り出し、玉に書かれた番号を取り出した順に$a_1,a_2,a_3$とする。ただし、取り出した玉はもとに戻さないものとする。
取り出した3個の玉が、赤玉2個、白玉1個であったとき、
$a_1 \lt a_2 \lt a_3$となる条件付き確率は$\boxed{ア}$、
$a_1 \lt a_2$かつ$a_2 \gt a_3$となる条件付き確率は$\boxed{イ}$
である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 1 }$1から3までの番号をつけた赤玉3個と、1から3までの番号をつけた白玉3個が入った袋から、玉を1個ずつ3回取り出し、玉に書かれた番号を取り出した順に$a_1,a_2,a_3$とする。ただし、取り出した玉はもとに戻さないものとする。
取り出した3個の玉が、赤玉2個、白玉1個であったとき、
$a_1 \lt a_2 \lt a_3$となる条件付き確率は$\boxed{ア}$、
$a_1 \lt a_2$かつ$a_2 \gt a_3$となる条件付き確率は$\boxed{イ}$
である。
投稿日:2024.10.09

<関連動画>

京都大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ

出典:2017年京都大学 過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第6問〜複雑な反復試行の確率と確率の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル$\overrightarrow{ v_k }$を
$\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})$
と定める。投げたとき表と裏がどちらも$\frac{1}{2}$の確率で出るコインをN回投げて、
座標平面上に点$X_0,X_1,X_2,\ldots,X_N$を以下の規則$(\textrm{i}),(\textrm{ii})$に従って定める。
$(\textrm{i})X_0$はOにある。
$(\textrm{ii})n$を1以上N以下の整数とする。$X_{n-1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }$
により$X_n$を定める。ただし、kは1回目からn回目までの
コイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表が
ちょうどr回出る確率を$p_r$とおく。ただし$0 \leqq r \leqq 200$である。$p_r$を求めよ。
また$p_r$が最大となるrの値を求めよ。

2022東京大学理系過去問
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問6

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問6. AチームとBチームが野球の試合を行います。どの試合も、AチームがBチームに勝つ確率は1/3で、引き分けはないものとします。
これについて、次の問いに答えなさい。
(8) 3試合めまで終えた時点でAチームが3勝0敗となる確率を求めなさい。この問題は答えだけを書いてください。
(9) 5試合めまで終えた時点でAチームが3勝2敗となる確率を求めなさい。
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 
PAGE TOP