【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄

問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) $y=\dfrac{x}{\sqrt{x^2+1}}$
(2) $y=2x+\sqrt{x^2-1}$
チャプター:

0:00 オープニング
0:03 漸近線の種類と考え方
2:50 (1)解説
4:12 (2)解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) $y=\dfrac{x}{\sqrt{x^2+1}}$
(2) $y=2x+\sqrt{x^2-1}$
投稿日:2025.03.05

<関連動画>

【数Ⅲ-160】定積分で表された関数③(極値編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。

①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$

➁$f(x)=\int_0^x (1-t^2)e^tdt$
この動画を見る 

【数Ⅲ-175】曲線の長さ②(媒介変数表示編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ②・媒介変数表示編)

ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①

②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
この動画を見る 

14和歌山県教員採用試験(数学:3番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
(i)$f`(x):$連続
(ii)$f(x)=\displaystyle \int_{1}^{x} (x-t)f`(t)dt+3x+1$
(iii)(ii)をみたす$f(x)$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\textrm{III}$ 微分(3) 媒介変数表示
$x=a(\theta-\sin\theta), y=a(1-\cos\theta)$のとき、$\frac{dy}{dx},\frac{d^2y}{dx^2}$を$\theta$で表せ。
この動画を見る 

【数Ⅲ】不等式を微分を使って証明する【増減表を見て最小値を探す】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$(2)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$ →\displaystyle \lim_{x\to \infty}\dfrac{\log x}{x}=0が示せ.$
$(3)x \gt 1のとき,\log x \gt \dfrac{2(x-1)}{x+1}を示せ.$
$(4)x \gt 0のとき,\sin x \gt x-\dfrac{x^2}{2}を示せ.$
この動画を見る 
PAGE TOP