関西学院大 3次方程式の解 - 質問解決D.B.(データベース)

関西学院大 3次方程式の解

問題文全文(内容文):
2022関西学院大学過去問題
a実数
$x^3-(2a+1)x^2-3(a-1)x-a+5 = 0$
①aの値に関わらずx=□は解である
②異なる3つの負の解をもつaの範囲
③$x^3=1$の虚数解の1つをωとする
ω+k(k>0)が解であるならa=□
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西学院大学過去問題
a実数
$x^3-(2a+1)x^2-3(a-1)x-a+5 = 0$
①aの値に関わらずx=□は解である
②異なる3つの負の解をもつaの範囲
③$x^3=1$の虚数解の1つをωとする
ω+k(k>0)が解であるならa=□
投稿日:2023.07.01

<関連動画>

#7数検1級1次過去問 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$z=\in$とする.
$iz^2-4(1+2i)z+2(7+6i)=0$を解け.
この動画を見る 

07高知県教員採用試験(数学:2番 対数,解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a$:定数である.
$\log_3 (x-1)^2+\log_3 (x+2)=a$において
異なる2つの正の解と1つの負の解をもつように
定数$a$の値の範囲を求めよ.
この動画を見る 

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 

式の値 虚数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 
PAGE TOP