N進法 旭川医大、滋賀医科大 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

N進法 旭川医大、滋賀医科大 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
旭川医科大学過去問題'09
$n^2+nm-2m^2-7n-2m+25=0$
(1)nをmを用いて表せ
(2)m,n自然数とする。m,n求めよ。
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#滋賀医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題'09
$n^2+nm-2m^2-7n-2m+25=0$
(1)nをmを用いて表せ
(2)m,n自然数とする。m,n求めよ。
投稿日:2018.04.18

<関連動画>

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)正の実数x,y,zが\\
\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=1\\
を満たすとき、(x-1)(y-2)(z-3)の最小値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:整式の減法の注意点

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$A=5x^2-2xy+y^2、B=-3x^2+2xy-4y^2$であるとき、$A-B$を計算しよう。
この動画を見る 
PAGE TOP