【概要欄に問題掲載】大学入試問題#167 岡山県立大学2020 数列 - 質問解決D.B.(データベース)

【概要欄に問題掲載】大学入試問題#167 岡山県立大学2020 数列

問題文全文(内容文):
$S_n=2a_n-n^2$のとき
一般項$a_n$を求めよ。

出典:2020年岡山県立大学 入試問題
チャプター:

07:46~解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$S_n=2a_n-n^2$のとき
一般項$a_n$を求めよ。

出典:2020年岡山県立大学 入試問題
投稿日:2022.04.12

<関連動画>

Σ立法の和の公式を視覚的に

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^3+2^3+\cdots+n^3=\{ \frac{n(n+1)}{2} \}^2$
$1^2+2^2+3^2+\cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$
この動画を見る 

漸化式 数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

あれですよ、あれ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{1!+2!+3!}+ \dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+$
$・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
これを解け.
この動画を見る 

順天堂大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(\sqrt2+1)^{2n-1}-(\sqrt2-1)^{2n-1}$
$a_{n+4}-a_n$が6の倍数であることを示せ.

順天堂(医)過去問
この動画を見る 
PAGE TOP