π/2=(2✕2✕4✕4✕6……)/(1✕3✕3✕5✕5……)ウォリスの公式 - 質問解決D.B.(データベース)

π/2=(2✕2✕4✕4✕6……)/(1✕3✕3✕5✕5……)ウォリスの公式

問題文全文(内容文):
ウォリスの公式に関して解説します.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ウォリスの公式に関して解説します.
投稿日:2018.03.19

<関連動画>

福田のわかった数学〜高校1年生036〜部屋割り論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 部屋割り論法$(1)$
$100個$の自然数がある。この中にその差が$99$で割り切れるような
$2個$の自然数が存在することを示せ。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{3n^2-5n+218}{3n-2}$が整数となる自然数$n$を求めよ.
この動画を見る 

千葉大 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
2018 $n ≡ 2$ (mod 1000)をみたす最小の自然数nを求めよ
この動画を見る 

早稲田(政経)格子点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 早稲田大学政治経済学部過去問
x-y平面に、互いに異なる 5個の格子点を選ぶ と、その中に次の性質を もつ格子点が少なくと も一対は存在することを示せ

※一対の格子点を結ぶ 線分の中点が格子点
この動画を見る 
PAGE TOP