福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
投稿日:2022.09.20

<関連動画>

福田のおもしろ数学578〜3乗根の和が0にはならない証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y,z$は相異なる実数とする。

$\sqrt[3]{x-y}+\sqrt[3]{y-z}+\sqrt[3]{z-x}\neq 0$

であることを証明して下さい。
    
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#模試解説・過去問解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の第1式が第2式で割り切れるように、定数$l,m$の値を定めよ。
(1)$ x^3+lx^2+mx+2 ,x^2+2x+2
(2) $x^3+lx^2+m ,(x+2)^2$
この動画を見る 

【高校数学】 数Ⅱ-21 不等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。

①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$

②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
この動画を見る 

聖マリアンナ医大 Σ4乗以上の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \sum_{k=1}^{n}k^3=\left[\dfrac{n(n+1)}{2}\right]$を示せ.
②$(k+1)^5-k^5=5k^4+10k^3+10k^2+5k+1$を利用して
 $\displaystyle \sum_{k=1}^{n}k^4$は$n$の5次式で表せることを示せ.
③$\displaystyle \sum_{k=1}^n k^d$は$n$の$(d+1)$次式で表せることを示せ.

2019聖マリアンナ医大過去問
この動画を見る 

早稲田の恒等式!この形は〇〇したくなりますよね【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の整数$m$,定数関数でない整式$P(x)$である.

$\displaystyle\int_{0}^{x} {P(t)}^m dt=P(x^3)-P(0)$

$P(x)$を求めよ.

早稲田大過去問
この動画を見る 
PAGE TOP