問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
投稿日:2022.07.29