【数学II】tanθの加法定理と直線の方程式 - 質問解決D.B.(データベース)

【数学II】tanθの加法定理と直線の方程式

問題文全文(内容文):
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
投稿日:2019.10.27

<関連動画>

【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
この動画を見る 

【数Ⅱ】三角関数:関数y=sin²x-cos²x+2√3xsinxcosx(0≦x<2π)の最大値・最小値及び、そのときのxの値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=\sin^2x-\cos^2x+2\sqrt3 x\sin x\cos x(0 \leqq x\lt 2\pi)$の最大値・最小値及び、そのときのxの値を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-110 点の回転

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
この動画を見る 

【高校数学】 数Ⅱ-109 2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____

◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。

②$y=-3x+5.y=2x$

③$y=\sqrt{ 3 }x,y=x-5$

④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
この動画を見る 
PAGE TOP