「ひっかけ方」 By にっし~Diaryさん - 質問解決D.B.(データベース)

「ひっかけ方」 By にっし~Diaryさん

問題文全文(内容文):
ポケモントレーナーA君は、伝説のポケモンMに遭遇し、ポケモンNを戦闘に出した。
A君は持ち物として、モンスターボール、スーパーボール、ハイパーボールをそれぞれ
十分に持っている。

1ターンにとれる行動は、「ポケモンNで伝説のポケモンMを攻撃する」か「3種類のい
ずれかのボールを1個投げる」だけである。
また、連続する2ターンのうち少なくとも1ターンは必ずハイパーボールを投げる。

10ターン目に伝説のポケモンを捕まえたとするとき、A君が10ターンで取った行動の組
み合わせとして考えられるのは全部で何通りか。
ただし、伝説のポケモンMは何回攻撃しても倒れることはないとする。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
ポケモントレーナーA君は、伝説のポケモンMに遭遇し、ポケモンNを戦闘に出した。
A君は持ち物として、モンスターボール、スーパーボール、ハイパーボールをそれぞれ
十分に持っている。

1ターンにとれる行動は、「ポケモンNで伝説のポケモンMを攻撃する」か「3種類のい
ずれかのボールを1個投げる」だけである。
また、連続する2ターンのうち少なくとも1ターンは必ずハイパーボールを投げる。

10ターン目に伝説のポケモンを捕まえたとするとき、A君が10ターンで取った行動の組
み合わせとして考えられるのは全部で何通りか。
ただし、伝説のポケモンMは何回攻撃しても倒れることはないとする。
投稿日:2024.08.20

<関連動画>

【高校数学】  数A-14  組み合わせ① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$_5C_2=$
②$_8C_3=$
③$_7C_7=$
④$_9C_7=$
⑤$_6C_1=$
⑥$_{14}C_{12}=$

⑦10人の生徒から3人選ぶとき、選び方は何通り?
⑧正七角形の3個の頂点を結んでできる三角形の個数は?
この動画を見る 

【高校数学】  数A-11  順列⑤ ・ 数字の応用編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
5個の数字0、1、2、3、4から異なる3個の数字を使って3桁の整数をつくる。
①偶数は何個作れる?
②3の倍数は何個作れる?
③小さい方から順番に並べて、43番目の数はいくつ?
この動画を見る 

【数A】条件付き確率の考え方

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/3 の確率で肝心なものを忘れるAOIさん 坂田アキラの「確率」が面白いほどとける本
この動画を見る 

知っていれば一瞬だけど。。。法政大学高校

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
7個のみかんをA,B,Cの3人に分ける方法は何通り?
ただし、3人は少なくとも1個はもらえるものとする。
2023法政大学中学高等学校
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の問題
問題
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が
終了する確率 $p_n$を求めよ。
に対する次の答案Aについて以下の問いに答えよ。
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要
はない。誤りがないときは「誤りなし」と答えよ。
(2) 答案Aで導かれたp_nと正解の$p_n$とで値が異なるとき、値が異なる最小のnを
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは
「すべて一致する」と答えよ。

答案A
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために
必要な回数がk回($k \geqq 0$)である確率を$p_n(k)$とする。このとき、
kは0,1,2のいずれかであるから、確率の総和は
$p_n(0)+p_n(1)+p_n(2)=1$
である。また、$p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2)$であるから漸化式
$p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)$
を得る。ここで$\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1$なので、$q_n=2^n(p_n-\frac{1}{7})$とすれば
$q_n+q_{n+1}+q_{n+2}=0$
である。よって$n \geqq 4$に対して
$q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}$
が成立する。以上より、
$Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.$
とすれば求める確率は
$p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
である。また最初の2項は定義より$p_1=p_2=0$であり$p_n$の漸化式で$n=1$とすれば
$p_1+2p_2+4p_3=1$ であるから$p_3=\frac{1}{4}$である。さらに
$q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}$
である。したがって
$p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
となる。

2022浜松医科大学医学部過去問
この動画を見る 
PAGE TOP