大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列 - 質問解決D.B.(データベース)

大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列

問題文全文(内容文):
$a_1=S$:実数
$(n+2)a_{n+1}=n\ a_n+2$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^m a_n=0$のとき$S$を$m$で表せ

出典:2023年東北大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:22 本編スタート
09:39 作成した解答①
09:50 作成した解答②
10:00 エンディング

単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=S$:実数
$(n+2)a_{n+1}=n\ a_n+2$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^m a_n=0$のとき$S$を$m$で表せ

出典:2023年東北大学 入試問題
投稿日:2023.04.29

<関連動画>

金沢大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-4,a_{n+1}=2a_n+2^{n+3}n-13・2^{n+1}$である.
一般項を求め,$a_n$を最小にする$n$の値を求めよ.

2003金沢大過去問
この動画を見る 

福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る 

東京薬科大 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ

出典:東京薬科大学 過去問
この動画を見る 

東邦 横市(医)慶應 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
$2log_5x+log_5y=log_5(x^2+y+59)$を満たす整数x,y

横浜市立大学過去問題
$\displaystyle\sum_{k=1}^{2n}(-1)^{k-1}k^2$

慶応義塾大学過去問題
$x+y+z=28$を満たす非負整数の組(x,y,z)のうちZが偶数となる場合の個数
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 数列$\left\{a_n\right\}$に対して、
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$\left\{a_n\right\}$は、$a_2=1,a_6=2$および
(*)$S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)$
を満たすとする。

(1)$a_1=-\boxed{\ \ ア\ \ }$である。(*)で$n=4,5$とすると、$a_3+a_4$と$a_5$の関係が2通り定まり、
$a_5=\boxed{\ \ イ\ \ }$と求まる。さらに(*)で$n=3$として、$a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }$と求まる。

(2)$n \geqq 2$に対して$a_n=S_n-S_{n-1}$であるから(*)とあわせて
$(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)$

ゆえに、$n \geqq 3$ならば$(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_n$となる。そこで、$n \geqq 3$に
対して$b_n=(n-r)(n-s)(n-t)a_n$とおくと、漸化式
$b_{n+1}=b_n (nz-3,4,5,\ldots)$
が成り立つ。ただしここに、$r \lt s \lt t$として$r=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }$である。
したがって、$n \geqq 4$に対して
$a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}$
となる。この式は$n=3$の時も成立する。

(3)$n \geqq 2$に対して
$S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}$
であるから、$S_n \geqq 59$となる最小の$n$は$n=\boxed{\ \ ニヌ\ \ }$である。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP