大学入試問題#501「積分区間を2π→0にせんでも・・・・」 産業医科大学(2016) #定積分 - 質問解決D.B.(データベース)

大学入試問題#501「積分区間を2π→0にせんでも・・・・」 産業医科大学(2016) #定積分

問題文全文(内容文):
$\displaystyle \int_{2\pi}^{0} |3\cos\ x-\sqrt{ 3 }\ \sin\ x|\ dx$

出典:2016年産業医科大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:12 本編スタート
07:24 作成した解答①
07:33 作成した解答②
07:44 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2\pi}^{0} |3\cos\ x-\sqrt{ 3 }\ \sin\ x|\ dx$

出典:2016年産業医科大学 入試問題
投稿日:2023.04.10

<関連動画>

#30 数検1級1次 過去問 複雑な定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定積分
$\displaystyle \int_{-1}^{1}\displaystyle \frac{x^4+2x^3+4x^2+6x+2}{x^3+2x^2+2x+4}\ dx$を計算せよ。
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

工夫が必要な回転体の体積 By にっし~Diaryさん

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$C_1:y=x^2$と$C_2:y=a\ log\ x$は$x=k$で接する
(1)$a$の値を求めよ
(2)$C_1,C_2,x$軸で囲まれた部分を、直線$x=k$を中心に回転させてできる体積を求めよ
この動画を見る 

福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。

2023筑波大学理系過去問
この動画を見る 

大学入試問題#342「深夜24時ストック0の選択」 岡山県立大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3} \displaystyle \frac{x^3+2}{x-1} dx$

出典2013年岡山県立大学 入試問題
この動画を見る 
PAGE TOP