【高校数学】n進法のかけ算割り算をどこよりも丁寧に 5-13【数学A】 - 質問解決D.B.(データベース)

【高校数学】n進法のかけ算割り算をどこよりも丁寧に 5-13【数学A】

問題文全文(内容文):
かけ算
(1)$1011_{(2)}\times1101_{(2)}$ (2)$203_{(4)}\times12_{(4)}$

割り算
(1)$101001101_{(2)}\div1001_{(2)}$ (2)$1542_{(7)}\div36_{(7)}$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
かけ算
(1)$1011_{(2)}\times1101_{(2)}$ (2)$203_{(4)}\times12_{(4)}$

割り算
(1)$101001101_{(2)}\div1001_{(2)}$ (2)$1542_{(7)}\div36_{(7)}$
投稿日:2022.08.26

<関連動画>

京都大 確率 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ

出典:1986年京都大学 過去問
この動画を見る 

名古屋大学文学部卒のゆる言語学者にオイラーの公式は理解できるのか?

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
この動画を見る 

福田の数学〜中央大学2024理工学部第2問〜確率の基本性質と3で割ったときの剰余類

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。$1, \, 2, \, \ldots, \, n$ の数が1つずつ書かれた $n$ 枚のカードがある。これらをよく混ぜて1枚のカードを引き、そこに書かれた数を $X$ とする。そのカードを元に戻し、よく混ぜてからもう一度1枚のカードを引き、そこに書かれた数を $Y$ とする。このとき $X-Y$ が $3$ の倍数である確率を $p(n)$、$X-Y-1$ が $3$ の倍数である確率を $q(n)$、$X-Y+1$ が $3$ の倍数である確率を $r(n)$ とする。
$(1)$ $q(3)=\fbox{ク}$ である。
$(2)$ $r(n)$ は $q(n)$ を用いて $r(n)=\fbox{ケ}$ と表せる。
$(3)$ $n$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{コ}}{\fbox{サ}}$ が成り立つ。
$(4)$ $n-1$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{シ}}{\fbox{ス}}$ が成り立つ。
$(5)$ $n-2$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{セ}}{\fbox{ソ}}$ が成り立つ。
この動画を見る 

福田の数学〜東北大学2024年理系第3問〜確率漸化式と複素数平面の融合

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$ を2以上の整数とする。それぞれ $A$, $A$, $B$ と書かれた $3$ 枚のカードから無作為に $1$ 枚抜き出し、カードをもとに戻す試行を考える。この試行を $n$ 回繰り返し、抜き出したカードの文字を順に左から右に並べ、$n$ 文字の文字列を作る。作った文字列内に $AAA$ の並びがある場合は 不可 とする。また、作った文字列内に $BB$ の並びがある場合も 不可 とする。これらの場合以外は 可 とする。

例えば $n = 6$ のとき、文字列 $AAAABA$ や $ABBBAA$ や $ABBABB$ や $BBBAAA$ などは 不可 で、文字列 $BABAAB$ や $BABABA$ などは 可 である。
作った文字列が 可 でかつ右端の $2$ 文字が $AA$ である確率を $p_n$、作った文字列が 可 でかつ右端の $2$ 文字が $BA$ である確率を $q_n$、作った文字列が 可 でかつ右端の文字が $B$ である確率を $r_n$ とそれぞれおく。

(1) $p_2$, $q_2$, $r_2$ をそれぞれ求めよ。また、$p_{n+1}$, $q_{n+1}$, $r_{n+1}$ を $p_n$, $q_n$, $r_n$ を用いてそれぞれ表せ。
(2)$p_n$+$2q_n$+$2r_n$を$n$を用いて表せ。
(3)$p_n$+$iq_n$-$(1+i)r_n$を$n$を用いて表せ。ただし、$i$は虚数単位である。
(4)$p_n$=$r_n$ を満たすための、$n$の必要十分条件を求めよ。
この動画を見る 

【高校数学】集合の要素の個数~大切なのは公式ではなく理解~ 1-4【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合の要素の個数についての説明動画です
この動画を見る 
PAGE TOP