こう見えて数3範囲 - 質問解決D.B.(データベース)

こう見えて数3範囲

問題文全文(内容文):
$\sqrt{x+1} = x-1$を解け
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{x+1} = x-1$を解け
投稿日:2022.06.08

<関連動画>

京都大 4次方程式 虚数解 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人京都大学

$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
この動画を見る 

久留米大(医)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=1+\sqrt{3}c$が解である$x^4+ax^3+ax^2+(6-a)x+b=0$の
実数$a,b$を求めよ.

久留米大(医)過去問
この動画を見る 

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式x³-5x²+ax+b=0が3+2iを解にもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+ax²+bx+3a-20=0が2重解-2をもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+3x²+(a-4)x-a=0が2重解をもつとき、定数aの値を求めよ。
この動画を見る 

高校入試だけど4次方程式  久留米大附設

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x^2-1)^2 = 2x^2 -2$

久留米大付設高等学校(改)
この動画を見る 
PAGE TOP