福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
投稿日:2024.03.20

<関連動画>

神戸大 複素数の2次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+i=0$を解け

出典:1971年神戸大学 過去問
この動画を見る 

大学入試問題#444「複素数の王道手筋」 神戸大学(1998) 文系 #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。

(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。

出典:1998年神戸大学 入試問題
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第1問(1)〜複素数と三角形の外接円

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)a$を正の実数とする。$x$についての方程式
$(x^2+ax+2)(x^2-ax-1)=0・・・①$
が異なる2つの実数解と異なる2つの虚数解をもつのは
$\boxed{ア} \lt a \lt \boxed{イ}\sqrt{\boxed{ウ}}・・・②$
のときである。
以下では、$a$は不等式$②$を満たす最大の整数とし、$i$は虚数単位とする。このとき、複素数平面上において、方程式$①$の異なる2つの虚数解と$3+i$を頂点とする三角形の面積は$\boxed{エ}$であり、この三角形の外接円を複素数zの方程式で表すと
$|x-\boxed{オ}|=\sqrt{\boxed{カ}}$
である。
この動画を見る 

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値

慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る 
PAGE TOP