福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
投稿日:2024.03.20

<関連動画>

福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$a$を正の実数とする。

(1)$a$が$1$でないとき、複素数$z$についての方程式

$a \vert z-1 \vert = \vert (a-2)z +a \vert$

を考える。

この方程式を満たす$z$全体の集合を

複素数平面上に図示せよ。

$2025$年北海道大学理系過去問題
この動画を見る 

甲南大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$

$Z+Z^2+Z^3+…+Z^{100}$

出典:2002年甲南大学 過去問
この動画を見る 

【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本⑫半直線のなす角を考えていきます.
この動画を見る 

福田のおもしろ数学200〜3次方程式の解の公式、カルダノの公式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3次方程式$ax^3+bx^2+cx+d=0 ~~(a\neq0)$の解を導く
この動画を見る 

2023久留米大(医)複素数の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数Zは$\vert Z \vert =1$で$Z^2-2Z+\dfrac{1}{Z}$が純虚数であるZの値を求めよ。

久留米大(医)過去問
この動画を見る 
PAGE TOP