福田のわかった数学〜高校1年生037〜部屋割り論法(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生037〜部屋割り論法(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(2)\\
座標平面上で異なる5個の格子点の\\
どれか2個を結ぶと、その中点が格子点になることを証明せよ。
\end{eqnarray}
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(2)\\
座標平面上で異なる5個の格子点の\\
どれか2個を結ぶと、その中点が格子点になることを証明せよ。
\end{eqnarray}
投稿日:2021.07.07

<関連動画>

福田の数学〜長文問題を解くコツは〜慶應義塾大学2023年環境情報学部第6問〜長文問題と2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{6}$いま、 A 国の部品会社 A 社から B 国のメ ー カ ー B 社が一定量の部品の取引を行うために、その取引価格pを交渉している。 A 社の生産コスト c は事前の投資額xに依存し、$\dfrac{1}{8}x^2-10x+220$が成り立っているものとすると、 A 社の利益はp-c-xと表すことができる。一方、 B 社はこの部品を使用し生産を行うことで308 の売上を得ることができるものとすると、 A 社から部品を輸人する際に 10 %の関税が課せられるため、 B 社の利益は$308- \dfrac{11}{10}p$と表すことができる。ところで、交渉は常に成立するわけではなく決裂することもあるから、 A 社およびB 社は共に決裂した場合のことを考慮しながら互いに交渉しなければならないそこで、交渉が成立したときの A 社 (B 社)の利益から、交渉が決裂したときのA社(B社)の利益(負の場合は損失を意味する)を引いた値を、A社(B社)の純利益と呼び、 A 社の純利益と B 社の純利益の積を最大化するようにpの値が定まるものとする。またA社は以上のことを踏まえて、自らの利益p-c-xを最大化するようなxの大きさの投資を、事前に行っておくものとする。
(1)交渉が決裂した時、A社は生産を行わず生産コストはかからないが、事前の投資額xの分だけ損失を被るのでA社の利益は-xとなり、B社はB国内の他の部品会社から、価格220で同僚の同じ部品を調達できるとすると、(この場合は関税がかからないことから)B社の利益は308-220=88となる。この場合の投資額xは$\fbox{ア}$となり、価格pは$\fbox{イ}$となる。
(2)交渉が決裂した時、A者は国内の他のメーカーに価格250で部品を販売できるとするとB社の利益は0となる。この場合の投資額xは$\fbox{ウ}$となり、価格pは$\fbox{エ}$となる。
最後に、交渉が成立した場合の「(2)の会社の利益」ー「(1)のA社の利益」=$\fbox{オ}$

2023慶應義塾大学環境情報学部過去問
この動画を見る 

【高校数学】数Ⅰ-28 命題②

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない

①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
この動画を見る 

高校範囲の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4+4$を因数分解せよ。
この動画を見る 

【高校数学】2次関数の最大最小例題~放物線の軸に文字~ 2-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について

(1) 最小値を求めよ

(2) 最大値を求めよ
この動画を見る 

ルートを含む不等式 自然数の個数 明大明治 令和4年度 2022 入試問題100題解説100問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは自然数
$3n-1 \leqq \sqrt x \leqq 3n$を満たす自然数xは2022個ある。
n=?

2022明治大学付属明治高等学校
この動画を見る 
PAGE TOP