福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
投稿日:2025.05.06

<関連動画>

15愛知県教員採用試験(数学:10番 極限)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}\\ \displaystyle \lim_{x\to 2}\\ \dfrac{\sqrt{2x+a}+b}{x-2}=\dfrac{1}{3}$
$a,b$を求めよ.
この動画を見る 

自治医大 関数の最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ

出典:自治医科大学 過去問
この動画を見る 

大学入試問題#558 東京帝国大学(1933) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ x+1 }+\sqrt{ x-1 }}{\sqrt{ x+1 }-\sqrt{ x-1 }}=\displaystyle \frac{4x-1}{2}$

出典:1933年東京帝国大学 入試問題
この動画を見る 

【数Ⅱ】等式の証明・基本パターン【型を押さえてきれいな答案を書く】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
等式の証明・基本パターンに関して解説していきます.
この動画を見る 

【数学Ⅱ/積分】絶対値を含む定積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ
$\displaystyle \int_{0}^{3} |x^2-1|dx$
この動画を見る 
PAGE TOP