割ると余りと商が等しい 2021西大和学園B - 質問解決D.B.(データベース)

割ると余りと商が等しい 2021西大和学園B

問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?

2021西大和学園高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?

2021西大和学園高等学校
投稿日:2021.01.25

<関連動画>

スタディーチューブ 企画「チャレンジチューブVol.5」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
a2+2b2=7c2を満たす整数(a,b,c)の組をすべて求めよ

(2)
a2+2b2=11c2を満たす全て2以上の自然数(a,b,c)
この動画を見る 

2021関西医科大 絶対値記号・整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x2|x|y+y2=3
整数(x,y)を求めよ.

2021関西医科大過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
4
(1)xを循環小数2.3˙6˙とする。すなわち

x=2.363636

とする。このとき

100×xx=236.3˙6˙2.3˙6˙

であるから、xを分数で表すと

x=        

である。

(2)有理数yは、7進法で表すと、二つの数字の並びabが繰り返し現れる循環小数
2.a˙b˙(7)になるとする。ただし、a, b0以上6以下の異なる整数である。
このとき
49×yy=2ab.a˙b˙(7)2.a˙b˙(7)
であるから

y=    +7×a+b    

と表せる。
(i)yが、分子が奇数で分母が4である分数で表されるのは
y=    4 または y=    4
のときである。y=    4のときは、7×a+b=    であるから
a=    , b=    
である。

(ii)y2は、分子が1で分母が2以上の整数である分数で表されるとする。
このようなyの個数は、全部で    個である。

2020センター試験過去問
この動画を見る 

質問に対する返答です。整数問題,数列の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
1t<u<v6m
t+u+v=6m
この動画を見る 

早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,a2=bn+225

早稲田大過去問
この動画を見る 
PAGE TOP preload imagepreload image