和歌山大 微分 2接線の直交条件 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

和歌山大 微分 2接線の直交条件 Mathematics Japanese university entrance exam

問題文全文(内容文):
和歌山大学過去問題
$C:y=x^3-kx$
C上の点Pにおける接線がCと点Qで交わり、Qにおける接線と直交する。
実数kの範囲を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#微分法#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$C:y=x^3-kx$
C上の点Pにおける接線がCと点Qで交わり、Qにおける接線と直交する。
実数kの範囲を求めよ。
投稿日:2018.11.24

<関連動画>

対数の近似値の求め方

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{246}$と$3^{144}$どちらが大きいか求めよ
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(3)〜三角不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$0\leqq x\leqq \pi$のとき、次の不等式を解け。
$\sin^2x-\cos^2x+sinx \gt 0$


2022中央大学経済学部過去問
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(2)
$f(x)=x^2e^{-|x-a|} (a \gt 2)$の極値を求めよ。
この動画を見る 
PAGE TOP