福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解

問題文全文(内容文):
${\large\boxed{2}}2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)$
を満たす$\theta$の範囲は
$0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi$
である。

2022早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)$
を満たす$\theta$の範囲は
$0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi$
である。

2022早稲田大学人間科学部過去問
投稿日:2022.08.02

<関連動画>

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線$r=1+\cos\theta(0 \leqq \theta \leqq 2\pi)$をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、$\frac{dx}{d\theta}=0$となる点、および
$\frac{dy}{d\theta}=0$となる点の直交座標を求めよ。
(2)$\lim_{\theta \to \pi}\frac{dy}{dx}$を求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。

2016神戸大学理系過去問
この動画を見る 

大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)関数f(x)は微分可能であり、すべての実数xについて
$f(x)=e^{2x+1}+4\int_0^xf(t)dt$
を満たすとする。関数$g(x)$を$g(x)=e^{-4x}f(x)$により定めるとき,
$g'(x)=\boxed{シ}$であり、$f(x)=\boxed{ス}$である。また、曲線$y=f(x)$と
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる
回転体の体積は$\boxed{セ}$である。

2021北里大学医学部過去問
\end{eqnarray}
この動画を見る 

近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。

早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る 
PAGE TOP