【高校数学】数Ⅰ-23 絶対値を含む方程式・不等式③(続 応用編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-23 絶対値を含む方程式・不等式③(続 応用編)

問題文全文(内容文):
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
投稿日:2014.04.21

<関連動画>

【数Ⅰ】相反方程式の解法(奇数次数の場合)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
相反方程式という特殊な方程式の解法を説明します。こちらの動画では定義の説明と、奇数次数の場合の解法を紹介しています。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
この動画を見る 

3乗根が綺麗になっちゃった

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a≧\frac{1}{8}$
$\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}$
の値を求めよ.
この動画を見る 

福田の一夜漬け数学〜因数分解たすきがけのコツ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の式をたすき掛けを用いて因数分解せよ。
$4x^2+8x-21$
$12x^2-10x-12$
$-4x^2+15x-9$
$3x^2-2xy-y^2$
$2x^2+5xy+3y^2-3x-5y-2$
$a(b^2-c^2)$$+b(c^2-a^2)$$+c(a^2-b^2)$
この動画を見る 

【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #高校リード問題集#高校リード問題集数Ⅰ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP