合同式 数学的帰納法 東工大 - 質問解決D.B.(データベース)

合同式 数学的帰納法 東工大

問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
投稿日:2020.04.22

<関連動画>

早稲田(社)整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\geqq 3$を自然数とする.
$2021_{(k)}$を
(1)$k-1$で割り切れる$k$の値を求めよ.
(2)$k+1$で割った余りを$k$で表せ.
(3)$k+2$で割ったら余りが$1$である$k$の値を求めよ.

2021早稲田(社)
この動画を見る 

つくば国際 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$自然数
$a^2+2$が$2a+1$の倍数となる$a$の値を求めよ

出典:つくば国際大学 過去問
この動画を見る 

【数A】整数の性質:○○でないの証明は背理法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$x,m,n$を全て求めよ.
$x^2=7^m-2^n$
この動画を見る 

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ

京都大過去問
この動画を見る 
PAGE TOP