福田の数学〜東北大学2024年文系第4問〜連立漸化式と不定方程式の整数解 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年文系第4問〜連立漸化式と不定方程式の整数解

問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とする。2つの整数$a_n$, $b_n$を条件
$(1+\sqrt 2)^n$=$a_n$+$b_n\sqrt 2$
により定める。ここで$\sqrt 2$は無理数なので、このような整数の組($a_n$, $b_n$)はただ1つに定まる。
(1)$a_{n+1}$, $b_{n+1}$を$a_n$, $b_n$を用いてそれぞれ表せ。さらに$b_4$, $b_5$, $b_6$の値をそれぞれ求めよ。
(2)等式$(1-\sqrt 2)^n$=$a_n$-$b_n\sqrt 2$ が成り立つことを数学的帰納法を用いて示せ。
(3)$n$≧2 のとき、$b_{n+1}b_{n-1}$-$b_n^2$ を求めよ。
(4)$pb_6$-$qb_5$=1, 0≦$p$≦100, 0≦$q$≦100 をすべて満たす整数$p$, $q$の組($p$, $q$)を1組求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とする。2つの整数$a_n$, $b_n$を条件
$(1+\sqrt 2)^n$=$a_n$+$b_n\sqrt 2$
により定める。ここで$\sqrt 2$は無理数なので、このような整数の組($a_n$, $b_n$)はただ1つに定まる。
(1)$a_{n+1}$, $b_{n+1}$を$a_n$, $b_n$を用いてそれぞれ表せ。さらに$b_4$, $b_5$, $b_6$の値をそれぞれ求めよ。
(2)等式$(1-\sqrt 2)^n$=$a_n$-$b_n\sqrt 2$ が成り立つことを数学的帰納法を用いて示せ。
(3)$n$≧2 のとき、$b_{n+1}b_{n-1}$-$b_n^2$ を求めよ。
(4)$pb_6$-$qb_5$=1, 0≦$p$≦100, 0≦$q$≦100 をすべて満たす整数$p$, $q$の組($p$, $q$)を1組求めよ。
投稿日:2024.04.24

<関連動画>

【高校数学】等差数列×等比数列の和~どこよりも丁寧に分かりやすく~ 3-12【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差×等比

$S=1・1+2・2++3・2²+…n・2^{n-1}$

を求めよ
この動画を見る 

広島大2002漸化式 最大項を求める

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=-30$であり,$9a_{a+1}=a_n-\dfrac{4}{3^n}$である.
$a_n$が最大となる自然数$n$を求めよ.

広島大過去問
この動画を見る 

福島県立医大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項$a_n$を求めよ
$a_1=2$
$S_nS_{n+1}=9^n$

出典:2006年福島県立医科大学 過去問
この動画を見る 

東京女子医大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京女子医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,S_n=\displaystyle \sum_{k=1}^n a_k$
$S_{n+1}=3S_n+4n^3+1$
これの一般項aを求めよ.

東京女子医大過去問
この動画を見る 

福島県立医大 4項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2-27x-27=0$の3つの解を$\alpha,\beta,\gamma$
$A_n=\alpha^n+\beta^n+\gamma^n$

(1)
$A_{n+3}$を$A_{n+2},A_{n+1},A_n$で表せ

(2)
$A_n$は$3^n$の倍数であることを示せ

出典: 福島県立医科大学 過去問
この動画を見る 
PAGE TOP