【数B】【数列】0<a<bとする。数列a,u,v,w,bが等差であり、数列a,x,y,z,bが等比(公比は実数)である。(1) uwとxzの大小を比較せよ。(2) u+wと、x+zの大小を比較せよ。 - 質問解決D.B.(データベース)

【数B】【数列】0<a<bとする。数列a,u,v,w,bが等差であり、数列a,x,y,z,bが等比(公比は実数)である。(1) uwとxzの大小を比較せよ。(2) u+wと、x+zの大小を比較せよ。

問題文全文(内容文):
0<a<bとする。数列a,u,v,w,bが等差数列であり、数列a,x,y,z,bが等比数列(公比は実数)である。
(1) uwとxzの大小を比較せよ。
(2) u+wと、x+zの大小を比較せよ。
チャプター:

00:00 スタート
00:13 (1)解説
02:35 (2)解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<a<bとする。数列a,u,v,w,bが等差数列であり、数列a,x,y,z,bが等比数列(公比は実数)である。
(1) uwとxzの大小を比較せよ。
(2) u+wと、x+zの大小を比較せよ。
投稿日:2025.08.14

<関連動画>

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 数列$\left\{a_n\right\}$に対して、
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$\left\{a_n\right\}$は、$a_2=1,a_6=2$および
(*)$S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)$
を満たすとする。

(1)$a_1=-\boxed{\ \ ア\ \ }$である。(*)で$n=4,5$とすると、$a_3+a_4$と$a_5$の関係が2通り定まり、
$a_5=\boxed{\ \ イ\ \ }$と求まる。さらに(*)で$n=3$として、$a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }$と求まる。

(2)$n \geqq 2$に対して$a_n=S_n-S_{n-1}$であるから(*)とあわせて
$(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)$

ゆえに、$n \geqq 3$ならば$(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_n$となる。そこで、$n \geqq 3$に
対して$b_n=(n-r)(n-s)(n-t)a_n$とおくと、漸化式
$b_{n+1}=b_n (nz-3,4,5,\ldots)$
が成り立つ。ただしここに、$r \lt s \lt t$として$r=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }$である。
したがって、$n \geqq 4$に対して
$a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}$
となる。この式は$n=3$の時も成立する。

(3)$n \geqq 2$に対して
$S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}$
であるから、$S_n \geqq 59$となる最小の$n$は$n=\boxed{\ \ ニヌ\ \ }$である。

2021慶應義塾大学経済学部過去問
この動画を見る 

群馬大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p$素数、$m,n$整数$(m \neq 0)$

$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列

$p,m,n$を求めよ

出典:群馬大学 過去問
この動画を見る 

確率漸化式 特性方程式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)正三角形ABCの頂点を1秒ごとに無作為に必ず隣の頂点に移動する虫がいる。虫がはじめ頂点Aにいる時、n秒後に頂点Aにいる確率を求めよ。
(2)2,3,5,7,9の数字が書かれたカードが各1枚入った箱がある。箱から無作為に1枚取り出し数字をメモしてカードは箱に戻す。これをn回繰り返したときにメモされた数字の合計が奇数である確率を求めよ。
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(3)〜線分上の格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)座標平面上の2点O(0, 0)とP(2023, 1071)について、線分OA上にある点(x, y)でx, yが共に整数であるものの個数は$\boxed{\ \ ウ\ \ }$である。
ただし、線分OPは両端点を含むものとする。

2023立教大学理学部過去問
この動画を見る 

1+2=❓  AKB□❗️❗️

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
この動画を見る 
PAGE TOP