e^π>22 示せ - 質問解決D.B.(データベース)

e^π>22 示せ

問題文全文(内容文):
$e^{\pi}\gt 22$を示せ.
$e \gt 2.71,\pi\gt 3.14$
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^{\pi}\gt 22$を示せ.
$e \gt 2.71,\pi\gt 3.14$
投稿日:2021.10.04

<関連動画>

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

【数A】中高一貫校問題集3(論理・確率編)171:場合の数と確率:反復試行の確率(ひっかけあり!!):先に3勝する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
この動画を見る 

【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第3問〜確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
二つの袋$A,B$と一つの箱がある。$A$の袋には赤球2個と白球1個が入っており、
$B$の袋には赤球3個と白球1個が入っている。また、箱には何も入っていない。

(1)$A,B$の袋から球をそれぞれ1個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の2個の球のうち少なくとも1個が赤球である確率は$\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を1個取り出すとき、取り出した球が赤球
である確率は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、取り出した球が赤球であったときに、
それが$B$の袋に入っていたものである条件付き確率は$\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コサ\ \ }}$である。

(2)$A,B$の袋から球をそれぞれ2個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の4個の球のうち、ちょうど2個が赤球である確率は$\displaystyle \frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$である。
また、箱の中の4個の球のうち、ちょうど3個が赤球である確率は$\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を2個同時に取り出すとき、どちらの球も
赤球である確率は$\displaystyle \frac{\boxed{\ \ タチ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。また、取り出した2個の球がどちらも
赤球であったときに、それらのうちの1個のみがBの袋に入っていたものである
条件付き確率は$\displaystyle \frac{\boxed{\ \ トナ\ \ }}{\boxed{\ \ ニヌ\ \ }}$である。
この動画を見る 

反省して数字を変えてみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2024}$÷1000
あまりを求めよ

$2^{2024}$÷196
あまりを求めよ
この動画を見る 
PAGE TOP