問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
投稿日:2021.06.01