岡山大(医)漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

岡山大(医)漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$pq\neq0$ $a_{1}=1$ $n=1,2,3$
$a_{n+1}=pa_{n}+\displaystyle \frac{q-p}{2}q^{n-1}$
一般項を求めよ。

出典:2008年岡山大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$pq\neq0$ $a_{1}=1$ $n=1,2,3$
$a_{n+1}=pa_{n}+\displaystyle \frac{q-p}{2}q^{n-1}$
一般項を求めよ。

出典:2008年岡山大学 過去問
投稿日:2019.02.11

<関連動画>

【数学A】一橋大学文系2010 確率の問題(解説)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$n$を3以上の自然数とする
サイコロを$n$回投げ、出た目の数をそれぞれ順に$X_1,X_2,$・・・$,X_n$とする
$i=2,3,…n$に対して$Xi=Xi-1$となる事象を$Ai$ことする。
(1)$A_2,A_3,…,A_n$のうち少なくとも1つが起こる確率$pn$は?
(2)$A_2,A_3,…,A_n$少なくとも2つが起こる確率$gn$は?
この動画を見る 

広島大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列${a_n}$
$a_{1}=\displaystyle \frac{1}{3},a_{n+1}=2a_{n}(1-a_{n})$

(1)
すべての自然数$n$で$a_{n} \lt \displaystyle \frac{1}{2}$を示せ

(2)
一般項を求めよ。

出典:1996年広島大学 過去問
この動画を見る 

【数学B】群数列を【3分】でマスターする動画(共通テスト対策)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】群数列の解説動画(共通テスト対策)
この動画を見る 

早稲田(商)特殊な数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数$k$に対して$a_k$を$\sqrt{k}$にもっとも近い整数とする.
これを解け.
(例)$a_5=2,a_{20}=4$

(1)$\displaystyle \sum_{k=1}^{12}a_k$
(2)$\displaystyle \sum_{k=1}^{1998}a_k$

1998早稲田(商)
この動画を見る 

【高校数学】 数B-70 等比数列とその和⑥

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.

②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
この動画を見る 
PAGE TOP