大学入試問題#802「ほんまに解いてほしい良問」 #岡山大学(2002) #通過領域 - 質問解決D.B.(データベース)

大学入試問題#802「ほんまに解いてほしい良問」 #岡山大学(2002) #通過領域

問題文全文(内容文):
座標平面上に点$A(0,2)$と点$B(1,0)$があり線分$AB$上の点$P$から$x$軸、$y$軸におろした垂線の足をそれぞれ$Q,R$とする。
点$P$が$A$から$B$まで動くとき、線分$QR$の通過する部分の面積を求めよ。

出典:2002年岡山大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: ますただ
問題文全文(内容文):
座標平面上に点$A(0,2)$と点$B(1,0)$があり線分$AB$上の点$P$から$x$軸、$y$軸におろした垂線の足をそれぞれ$Q,R$とする。
点$P$が$A$から$B$まで動くとき、線分$QR$の通過する部分の面積を求めよ。

出典:2002年岡山大学 入試問題
投稿日:2024.04.26

<関連動画>

【高校数学】三角関数⑧~グラフで解く最大値・最小値~ 4-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦$\displaystyle \frac{7π}{4}$)
(2) y=2cos(θ+$\displaystyle \frac{π}{3}$)(0≦θ≦π)
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る 

綺麗な三次方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-3)^3+(x-2)^3+(x-1)^3=x^3$
これを解け.
この動画を見る 

微分の難問!それぞれの関数の〇〇を比較すればOKです【滋賀大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。

(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。

(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。

滋賀大過去問
この動画を見る 

【数Ⅱ】式と証明:分数式の基本

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
$\dfrac{x^2-y^2}{x^2-(y-z)^2}\times\dfrac{(x-y)^2-z^2}{x^2-xy}\div \dfrac{x^2+2xy+y^2}{x^2+xy-xz}$
この動画を見る 
PAGE TOP