問題文全文(内容文):
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
投稿日:2025.04.23





