大学入試問題#155 琉球大学(1987) 極限 - 質問解決D.B.(データベース)

大学入試問題#155 琉球大学(1987) 極限

問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。

出典:1987年琉球大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。

出典:1987年琉球大学 入試問題
投稿日:2022.03.29

<関連動画>

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 

福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
この動画を見る 

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
この動画を見る 

『lim』極限について~中学生でも理解させます~

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\displaystyle
\lim_{x \to 0} x
$
この動画を見る 

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 
PAGE TOP